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Abstract

The search and detection of faint moving objects in image data can enable discoveries of small solar system bodies.
To detect objects fainter than the single-frame sensitivity limit, track-before-detect methods can improve the signal-
to-noise ratio of the object of interest by incoherently adding the object’s signal across multiple frames. However,
traditional track-before-detect techniques can become computationally intensive over large search volumes. In this
work, we present a computational approach to significantly speed up the search process by applying dynamic-
programming techniques to implement the discrete X-ray transform. In this approach, image frames are processed
in stages, in each of which pairs of frames are shifted and added to generate short-track segments, which are
combined in later stages to form longer tracks. The algorithm speedup comes from the fact that a single short track
segment can be reused multiple times for different longer tracks without the need for recomputing. Benchmark
testing with simulated data shows that the method presented in this paper results in a significant reduction in
runtime in comparison to a traditional track-before-detect approach. As a proof of concept, we demonstrated the
applicability of the technique in performing a blind search for faint asteroids in image data collected from the
Transiting Exoplanet Survey Satellite, leading to the detection of more than a thousand asteroids below the single-
frame detection limit with moderate computational resources. The approach presented in this work has the potential
to enable efficient discovery of previously undetected faint solar system objects across multiple orbit classes.

Unified Astronomy Thesaurus concepts: Small Solar System bodies (1469); Asteroids (72); Algorithms (1883);

CrossMark

Detection (1911)

1. Introduction

Small solar system bodies, such as near-Earth asteroids,
main-belt asteroids, and trans-Neptunian objects, are of
significant scientific interest but can be challenging to detect
due to their faint signals, limited by the combination of their
sizes and distances from Earth. In optical systems, the detection
sensitivity limit depends on the integration time and properties
of the telescope and detector such as aperture size, quantum
efficiency, and sensor noise properties, as well as sky
background level. Objects that are fainter than the detection
sensitivity limit of the optical system will have insufficient
signal-to-noise ratio (S/N) to be detected with traditional
detection methods.

A common technique used to improve the detectability of
faint space objects in optical data is to incoherently combine
the object’s signal across multiple image frames to achieve
improved S/N of the object of interest. For an object with a
well-known ephemeris, an improved S/N can be accomplished
simply by adding up the pixel values along its known track
across multiple frames. However, when the object of interest
does not have well-defined state vectors, multiple different
velocity hypotheses need to be tested before detection can be
accomplished; such method is often referred to as track-before-
detect, velocity-matched filtering, or synthetic tracking (Reed
et al. 1988; Tonissen & Evans 1996; Davey et al. 2007;
Uetsuhara & lkoma 2014; Zhai et al. 2014; Fujimoto et al.
2015). In the case where no a priori position or velocity
knowledge is available such as in the discovery of new space
objects, traditional track-before-detect techniques can become
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computationally intensive. Synthetic tracking techniques have
been demonstrated to be capable of discovering faint space
objects (Shao et al. 2014; Heinze et al. 2015), including
techniques to improve search efficiency with the use of a
graphics processing unit (GPU; Whidden et al. 2019).
Algorithmic improvement for track-before-detect implementa-
tion to expand the search for previously unknown space objects
remains an active research topic of interest.

A potential approach to improve the computational effi-
ciency of track-before-detect methods is to utilize divide-and-
conquer and dynamic-programming methodologies. Such
algorithms have been demonstrated in finding linear streaks
through 2D images by quickly computing the Radon transform
of the image, which maps line integrals in the original image
space to a single point in the Radon space, the coordinates of
which correspond to the position and slope of the line along
which the integral was taken. The fast discrete Radon
transform, which takes advantage of overlaps in discrete lines
to reduce the total number of computations, was described in
Brady (1998). This effective dynamic-programming algorithm
achieves O(N?logN) time complexity, in comparison with
O(N?) time complexity of the traditional Radon transform.
Similar techniques have been demonstrated for asteroid
detection in astronomical data (Nir et al. 2018) and orbital
debris detection in simulated data (Hickson 2018).

Although the fast Radon transform can efficiently detect
linear streaks in a single image at a time, it is not applicable
when the integration time of the optical system is short relative
to the object motion, i.e., the object does not streak in an image
but instead appears to be a point source with relative motion in
subsequent image frames. This operation mode is more
sensitive to detecting faint objects because it avoids smearing
the signal over multiple pixels, each of which introduces
additional noise components and reduces the overall S/N. One
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could stack multiple images of an object moving in time to
create a composite long-exposure image containing the object
streak and apply the fast Radon transform; however, the
process of stacking image frames will inadvertently introduce a
significant increase in noise level in pixels that no longer
contain the target object and, thus, reduce the S/N of the target
object in the composite stacked images.

Analogous to the use of the discrete Radon transform to
detect streaks in 2D images, a mathematical transform that
maps the sum of pixels along lines going through a 3D image
frame stack can enable the detection of faint moving objects
through the input frame stack as a track-before-detect method.
We identified this mathematical transformation to be effec-
tively a simplified, discrete form of the X-ray transform used in
computed tomography, with the traditional attenuation function
being replaced by the pixel value of the images in the frame
stack. In medical imaging fields, the inverse X-ray transform
can be used to reconstruct the attenuation or density of the
medium of interest (Hamaker et al. 1980). In the faint-object
detection problem, the forward X-ray transform can be used to
solve the reverse problem by finding integrals of lines going
through a known 3D medium, which is the input image stack in
this case. Although advancement in computed tomography
regarding the X-ray transform has been published (Averbuch &
Shkolnisky 2004; Gao 2012), existing algorithms have been
narrowly targeting 3D image reconstruction and are unsuitable
for the application of faint-object detection over large search
volumes.

In this work, we present a new method, referred to in this
paper as the fast discrete X-ray transform (FaXT), that is
capable of efficiently searching and detecting faint objects
moving through an image frame stack with linear motion by
employing dynamic-programming and divide-and-conquer
techniques, following similar methodology to the fast Radon
transform but extended to be applicable to 3D input data
structures. The time complexity of the FaXT algorithm is
O(N*), a significant improvement to traditional track-before-
detect and synthetic tracking methods, which grow as O(N>),
as shown in Section 2. To demonstrate the improvement in the
performance of FaXT relative to traditional track-before-detect
methods, we performed benchmark testing with simulated data
and report runtime and detection probability for FaXT and a
standard velocity-matched filtering (VMF) technique. As a
proof of concept, we developed a track-before-detect pipeline
based on FaXT and demonstrated its capability on image data
from the Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2015) to perform a blind search for asteroids. Although
the detection of bright nearby asteroids up to the single-frame
sensitivity limit (P4l et al. 2020; Woods et al. 2021) and distant
solar system objects with limited search parameters (Holman
et al. 2019; Rice & Laughlin 2020) have been demonstrated to
be possible with TESS data, no blind search for faint objects
over large position and velocity search space has been
demonstrated with TESS due to computational constraints
(Payne et al. 2019). In this work, we show that FaXT can be
used to perform a full-blind search for asteroids with no prior
knowledge of their positions or velocities with moderate
computational resources, demonstrating that FaXT is a
practical solution to finding faint moving objects in optical
image data.
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2. Method Description

As discussed in Section 1, a form of the discrete X-ray
transform can be used to implement track-before-detect to
search for faint moving objects traveling through an image
frame stack. In this application, the discrete X-ray transformed
parameter space can be defined as a 4D data structure, with two
dimensions representing the line starting positions in the first
image frame and two dimensions representing the displacement
through the frame stack. Each element in the output data
structure corresponds to the sum of pixels along a linear track,
parametrized by its starting positions and total displacement, as
shown in Equation (1). In this representation, the input data
consists of an image stack of N frames {I;, b,,...Iy}. The output
element X(xo, yo, dx, dy) represents the value of the discrete
X-ray transform that corresponds to a linear track that starts at
(X0, Yo) in frame 1 and ends at (xo + dx, yo + dy) in frame N.
The pixel selected (x;, y,) at frame [, can traditionally be
calculated as the nearest integer pixel of the interpolation of the
line defined by (xo, yo, dx, dy), as shown in Equation (2), for
ke{l, 2,...,. N }.1 The full output matrix can be compiled by
applying Equation (1) for a range of starting positions {(xq, yo)}
and displacements {(dx, dy)}, which defines the search space of
interest.

N
X (x0, Yoo dx, dy) = > L (xe, yp), )]
k=1
xkzxo+[ - 1)]
N1
o . 2)
YkZYO+[N_1 '(k—l)]

A common technique used to achieve the equivalent of the
X-ray transform matrix is to shift and stack images in the
frame stack to test each velocity hypothesis for all possible
starting positions. For instance, testing the velocity hypothesis

( dx d—)) for all starting positions can be accomplished by

N-1" N—1
shifting framekby[Ndfl (k- 1)] inxand[% k- 1)]
in y before vertically stacking all N frames. This algorithm
consists of approximately N, x Ny X N,, X N,, x N number of
operations, where N,, N, represent the image frame size; N,,
N, represent the number of velocity hypotheses tested; and N
represents the number of frames. For Ny~ N, ~N,,~ N,, ~ N,
this algorithm grows as O(N?). Once the output matrix, which
consists of the summation of pixel values across multiple linear
track hypotheses, has been compiled, source detection can be
applied to return peak values in the 4D parameter space. A peak
value will indicate a potential detection of a moving object with
position and velocity corresponding to the indices in the 4D
data structure. The theoretical improvement in S/N after
summing up values across N frames is +/N, assuming Gaussian
noise statistics.

In this work, we introduce the fast track-before-detect
method referred to as FaXT. FaXT is an implementation of the
discrete X-ray transform that employs dynamic-programming
methodology, which takes advantage of overlapping short
tracks that only need to be computed once and can be reused

' In this work, xo, Yo, dx, dy, x;, and y, are constrained to be integers. The [.]

notation indicates rounding to the nearest integer. Subpixel shift/add is
possible but adds additional computational complexity and is outside the scope
of this work.
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Table 1
Examples of the fy Sequence for N=28 and d € {0, 1,..7}
k 1 2 3 4 5 6 7 8
fsk, d=0) 0 0 0 0 0 0 0 0
fstk, d=1) 0 0 0 0 1 1 1 1
fstk, d=12) 0 0 1 1 1 1 2 2
Sk, d =13) 0 0 1 1 2 2 3 3
fstk, d=4) 0 1 1 2 2 3 3 4
Sk, d=5) 0 1 1 2 3 4 4 5
fs(k, d =6) 0 1 2 3 3 4 5 6
fek, d="1T) 0 1 2 3 4 5 6 7

for multiple longer tracks, reducing the total number of
operations necessary to perform a full search of the linear
hypotheses search space. Instead of testing each velocity
hypothesis independently as in traditional approaches, FaXT
discretizes the linear tracks in a manner where overlapping
segments can be reused. The discretized track can be visualized
by recursively dividing the total displacement in half, in a
similar manner to the common divide-and-conquer methodol-
ogy. Assuming that the total number of frames N is a power of
two (i.e., N =2"), the pixel values used in summation for each
linear track (xg, yo, dx, dy) can be computed as shown in
Equation (3), where k is the frame number.

{xk = xo + fy (k, dx)

b 3
e = Yo + Sy (k. dy) )

where fy(k, d) can be generated for d€ {0, 1,.N—1} as
follows,

fy(,d)=0
InWN,d)=d 4)

for k=2", wherenec {m—1, m—2,...,1}

| ko
fN<k,d>_[ ! J
fuk+1, d):[W]. o

The values of fy for the remaining k can be filled in to
achieve symmetry in displacement around each power of two
break points. Examples of the fy sequence for N = 8 are shown
in Table 1 for different values of d in the range of 0-7. The fy
sequence shows the discretized path chosen by the FaXT
algorithm to traverse a displacement d. Recurring displacement
patterns can be seen in Table 1, highlighting the path overlaps
between similar displacement values that contribute to the
algorithmic speedup of this method.

The FaXT algorithm can be implemented with a “bottom-
up” approach to avoid recursion by utilizing dynamic-
programming methodology, where intermediate results are
stored in each stage to be reused without the need for
recomputing. The FaXT algorithm implementation consists of
log, N stages, where N is the number of frames in each frame
stack. The search velocity range in this algorithm description
covers up to 1 pixel per frame with a resolution of 1/N pixel
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per frame in both x and y directions. In the first stage,
consecutive pairs of frames are grouped and basic relative shift-
add operations with (0, 0), (0, 1), (1, 0), and (1, 1) relative pixel
offsets are applied in x and y directions.” The output of this
stage can be visualized as the integrated signals along short
tracks, consisting of each pixel in one frame and their
neighboring pixels in the next frame. In the next stage, the
same process can be applied to the output of the first stage,
creating integrated signals along longer tracks by stitching
together the short tracks of the same slope generated in the first
stage. The output after log, N stages is a data structure of
integrated signals along linear tracks going through the entire
image stack, where each track is discretized based on
Equations (3)—(5). A summary of the FaXT method for
computing the sum of pixels along linear tracks through an
image frame stack is illustrated in Figure 1.

FaXT computational speedup comes from the fact that every
unit-sized track is computed exactly once and can be reused to
form multiple longer tracks at later stages. The computational
complexity of FaXT can be computed as follows. Let the input
data set be a stack of N frames, where each frame is of size N, by
N,. Let the search space span positive x and y velocities up to
1 pixel per frame. At stage m, the number of operations
performed is described in Equation (6), which equals the product
of the number of pixels in each frame, the number of composite
frame pairs, and the number of shifts per frame pair.’

OWNy, Ny, N)yy = Ny X Ny X 2
)

frame size number of shifts per frame pair

m— 1
N
2
—
number of composite frame pairs

= 2"N,N,N. (6)

X

The total number of operations of the FaXT algorithm can be
computed as shown in Equation (7), by summing up the
number of operations needed in each of the log, N stages. For
N, =~ N, ~ N, the complexity of FaXT grows approximately as
O(N%), in comparison with traditional track-before-detect
techniques, which grows as O(N°) as previously shown. The
improvement in time complexity by a factor N can enable a
significant reduction in search time for unknown faint objects,
as shown in the following sections.

log, N
O, N,, N) = > 2"N,N,N = 2N,N,N(N — 1) (7)

m=1

3. Performance Assessment

The performance of the FaXT algorithm was assessed in a
series of benchmark tests with simulated image stacks. In this
testing framework, simulated images were generated, consist-
ing of a point source representing a space object overlaying a
noisy background with Gaussian noise statistics. Each image
stack has N frames, each with N x N pixels. The point source is

2 Note that these basic shifts will search the (4x, +y) velocity quadrant. To

search other velocity quadrants, the sign of each shift can be adjusted
accordingly. Alternatively, the input data structure can be flipped prior to
performing the FaXT shifts to perform a search in a different velocity quadrant
while maintaining the signs of the four basic shifts.

3 O can be interpreted as the tight bound of the algorithm.
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Figure 1. Illustration of the FaXT algorithm. FaXT transforms an input 3D data structure, such as an image stack, into an output 4D data structure, where each element
represents the sum of input elements along a discretized linear track. FaXT consists of log, N stages. In each stage, basic shift-add operations are performed on the
output of the previous stage, effectively generating longer tracks by combining previously generated short tracks. This process allows for each unit track to only be
computed once and reused to form multiple longer tracks. For example, in the lower right, it can be seen that the unit track with endpoints (0, 0, 0) and (0, 0, 1), which
was computed once in Stage 1, can be used to form four longer tracks (highlighted in blue) in Stage 2.

simulated with the following input parameters: input S/ N* 1o
point-spread function (PSF) size, starting position, and ending
position. The object motion is constrained to be linear in time
in both x and y direction. Figure 2 shows selected frames from a
sample simulated image stack with N = 64.

The goal of this benchmark testing is to compare the
runtime and detection performance of FaXT and a traditional
shift-stack approach, referred to in this section as VMF, in
recovering the position of a faint injected point source in
simulated image data in a blind search. FaXT and VMF were
used to generate sums of pixels along a set of linear track
hypotheses. In this case, the set of hypotheses includes any
track that starts at an integer pixel in the first frame and
has a nonnegative integer total displacement. In the traditional
VMF implementation, summations along each velocity

4 The input S/N in this case represents the ratio between the total input signal
and the noise level over one pixel, in a single frame. The input source is
modeled as a 2D Gaussian distribution. The per-pixel S/N can be estimated by
scaling the input S/N accordingly based on the spot size.

hypothesis were computed independently by shifting and adding
frames along interpolated linear paths. The FaXT method was
implemented as described in detail in Section 2. The same basic
thresholding detection method was applied for both FaXT and
VMF methods after all velocity hypotheses had been tested for
consistency in comparison.

In this benchmark testing, a series of image stacks were
generated with size N =32, 64, 128, 256, object S/N in the
range of [1, 6], and PSF size of 0.5 pixel 1o (=90% energy
within 4 pixel®). The starting and ending positions of the object
were randomly generated with constraints that the object starts
within the first frame and has nonnegative x and y velocities.”
For each test case, 100 frame stacks were generated, each with
a single Gaussian PSF, moving linearly across the frame stack
with randomly generated positions and velocities. To recover
the position of the point source, FaXT and VMF were applied
to each stack with a search velocity range of [0, 1] pixel per

The constraints are set to simplify benchmark tests and not requirements for
FaXT or VMF to operate.
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Simulated Image Stack
Input SNR = 30.0 ; Tpgp = 0.5 pix

Frame #20
Max pixel = 8.8

Frame #1
Max pixel = 9.1

r

Frame #40
Max pixel = 7.80

Frame #60
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Figure 2. Selected frames from a simulated image stack of size 64 x 64 x 64. The simulated point source is modeled as a 2D Gaussian with 0 = 0.5 pixels and a total
S/N of 30. The point source moves with linear motion with a starting position (10, 10) in the first frame and an ending position (60, 60) in the last frame. The
brightest pixel in each frame is a fraction of the total input S/N based on how the 2D Gaussian PSF is sampled by the pixel grid.
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Figure 3. (a) Runtime of FaXT and VMF for different input data volume sizes. (b) Detection probability of FaXT and VMF for different input S/N levels and input
data volume sizes. FaXT achieves a similar detection probability to traditional VMF while also providing significant runtime improvement.

frame with a resolution of 1/N pixel in both x and y directions,
leading to a total number of N* velocity hypotheses. The
runtime and detection probability were recorded for each
Monte Carlo run for both FaXT and VMF for performance
assessment.°

The performance comparison results are shown in Figure 3
for FaXT and VMF track-before-detect methods. Runtime
results are summarized in Figure 3(a), showing a significant
reduction in average runtime with FaXT in comparison with
VMF. For instance, for data cubes of size 256, each FaXT run
takes, on average, roughly 90 s to complete, whereas each
VMF run takes roughly one hour and 20 minutes. In addition,
VMF runtime grows faster than FaXT, consistent with the
previous time complexity analysis shown in Section 2.” The
detection probability for each method from the same bench-
mark tests is shown in Figure 3(b) as a function of the input
S/N and data size. It can be seen that both FaXT and VMF

©  All benchmark tests were performed on Intel Xeon Platinum 8260 CPU

nodes (Reuther et al. 2018).

7 Note that the implementations of VMF and FaXT both come with overhead
that was not captured in basic time complexity analysis; these constant terms do
not, however, affect the general trend in the growth rate of each algorithm.

have similar detection performance with marginal differences,
caused by the differences in how full-track hypotheses were
discretized into integer pixel coordinates at each frame. In
VMF, track hypotheses are interpolated to each frame and
rounded to the nearest pixel, as described in Equation (2); in
FaXT, track hypotheses are discretized following a recursive
division algorithm to take advantage of dynamic-programming
techniques, as detailed in Equations (3), (4), and (5). Overall,
the benchmark results show that FaXT can achieve similar
detection performance to traditional VMF techniques with
significant improvement in runtime, especially for large
amounts of image data and search volumes.

4. Proof of Concept

We present a proof-of-concept demonstration using full-
frame image data from the TESS mission to demonstrate the
applicability of FaXT in detecting faint moving objects. TESS
is an all-sky survey mission with the goal of discovering
exoplanets around bright and nearby stars. The TESS
instrument, consisting of four wide-field cameras, observes a
sky region for 27 days at a time before moving on to the next.
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Figure 4. Proof-of-concept multiframe search and detection pipeline of faint moving objects in TESS data.

During these observation sectors, many asteroids passed
through the instrument's field of view. The TESS asteroid
search single-frame limiting magnitude is 19.0 at 90%
completeness for 30 minute cadence data (Pal et al. 2020;
Woods et al. 2021). Asteroids fainter than this limit will require
multiframe search-and-detect techniques such as track-before-
detect. A solar system yield estimate from TESS data suggested
that it would be challenging computationally to search for faint
objects within 10au in TESS data, which includes large
populations of asteroids, due to the computation required to
cover the velocity search space (Payne et al. 2019). In this
proof of concept, we aim to show that FaXT can effectively
search for asteroids over large search volumes in TESS data
with reasonable computational resources to address previous
limitations.

The pipeline used in this proof of concept is illustrated in
Figure 4. Calibrated full-frame images from the TESS mission
were bulk downloaded from the Mikulski Archive for Space
Telescopes (STScl 2022). In the first step of the pipeline, a
background subtraction process was applied to the image
frames, where bright static sources such as stars and back-
ground light are removed using the same pipeline as described
in Woods et al. (2021). The next part of the pipeline is a blind
search and detection process applied to the subtracted image
stack. First, FaXT is applied to multiple subdivided stacks of
image data to generate 4D data structures, where each element
represents the sum of pixels along a particular discretized linear
track. In the detection step, source detection was performed on
the 4D data structures through a series of spatial filtering,
thresholding, and connected component analyses to return
linear tracks with high S/N that are consistent with potential
signals from faint objects. Next, linear tracks across multiple
subdivided stacks are aggregated, grouped, and fitted into a
full-track solution through the total frame stack. To assess the
performance of the blind search and detection pipeline,
detected tracks are compared with the propagated positions of

known asteroids from the Minor Planet Center (MPC) Orbit
Database catalog.

In this proof of concept, the first 512 full-frame images from
TESS Sector 5, Camera 1, CCD 4 were used as input, spanning
a total of approximately 256hr (10.7 days).® Each frame
has 2048 x 2048 pixels and 30 minutes cadence.” The input
data volume was divided into substacks, each with
256 pixels x 256 pixels x 128 frames with 128 pixel overlaps
in each spatial dimension. The depth of multiframe integration
in this proof of concept is 128 frames per substack, equivalent
to 64 hr of integration. The substack dimensions were selected
to be computationally compatible with our computational
system and to ensure that each fast-moving asteroid will still
start in the first frame and end in the last frame of at least one
substack. The velocity search space in this proof of concept
ranges from 0 — 1 pixel per frame (up to 0”7 min~") along the
ecliptic plane and —1 — 1 pixel per frame (—0”7 min~' to
+0”7 min~") along the ecliptic normal vector.'® The resolution
of the velocity search in both directions is 1/128 pixel per
frame (~0”005 min "), leading to a total of 128 x 256 velocity
hypotheses.

The pipeline was demonstrated on 64 CPU nodes (Intel
Xeon Platinum 8260); the system is part of the MIT Lincoln
Laboratory Supercomputing Center (Reuther et al. 2018).
FaXT and detection stages were applied to each data block
independently on different CPU cores. Track generation was
performed after detections from all subdata blocks had been
processed. A track is defined when detections were made in
two or more consecutive frame blocks (256 frames) to further
reduce the false-positive rate. The runtime of the pipeline is
detailed in Table 2. It is noted that multihypothesis line search

8 Sector 5 has a total of 1196 image frames. The selected 512 frames account

for the majority of image data from the first orbit.

° Due to the TESS cosmic-ray mitigation scheme, the effective exposure of
each frame is 24 minutes.

19 Note that objects with angular motion of less than 0702 s~
removed during star subtraction in the image preprocessing phase.

! would be
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Table 2
Runtime Summary of Multiframe Search and Detection Pipeline
Image Track
Loading FaXT  Detection® Generation” Total
(Parallel processing on
substacks)”
Approx. 250s 20's 200 s 160 s 630 s

Runtime

Notes. The total number of track hypotheses tested is approximately 2°7, which
represents 20487 pixels per frame and 128 x 256 velocity hypotheses. Runtime
reported does not include scheduling overhead, intermediate data saving and
loading, or object association.
4 Runtime depends on the properties of image data.

Runtime depends on number of CPU cores available and memory per
compute node.

has traditionally been the bottleneck of such faint-object
detection pipelines; the implementation of FaXT has been
demonstrated to relieve this bottleneck without significant
degradation in performance, as shown in Section 3.

The multiframe faint-object search and detection pipeline
described above returns a total of 2145 detected tracks, of
which 1997 (93%) were correlated to known asteroids in the
MPC catalog and 148 (7%) are uncorrelated detections. The
detected known objects in this blind search have semimajor
axes ranging from 2.1 to 4.0 au, consisting of 1917 main-belt
asteroids, 77 outer main-belt asteroids, and 3 Mars-crossing
asteroids.'' The apparent motion of the detected known objects
relative to the instrument ranges from +0.4 to +1 pixel per
frame along the ecliptic plane and —0.8 to +0.7 pixel per frame
along the ecliptic normal vector. Analyses of the detections
made that were not matched to known objects will be a topic
for future work and are out of scope for this proof of concept.

To assess performance improvement, detections from single-
frame pipeline as described in Woods et al. (2021) were used as
a baseline for comparison. Note that the single-frame and
multiframe pipelines share the same image preprocessing stage.
In addition, it is noted that the multiframe pipeline also returns
the majority of single-frame pipeline detections with the
exception of very bright objects, which were intentionally
suppressed in the multiframe pipeline to enable detections of
very faint objects while maintaining a reasonable false-positive
rate. The detection results are summarized in Figure 5, showing
completeness in detection as a function of the object's visual
magnitude in the case of single-frame detection with and
without the addition of the faint-object detection technique
presented in this paper. The total number of known objects is
composed of all known objects from the MPC database that
had passed through the instrument’s field of view at the time
the images in the frame stack were taken and persisted in 256
or more frames. Results from this proof of concept show that
multiframe search and detection with FaXT is capable of
improving the sensitivity limit by approximately 1.5 visual
magnitudes, leading to 1433 new detections in the same set of
image data, with >40% completeness up to 21 visual
magnitude'?

"1 The orbit classification used was based on the Jet Propulsion Laboratory
solar system Dynamics Small-Body database.

12 The visual magnitude reported in this work refers to the MPC estimated
magnitude, averaged over the duration of the TESS frames used in this
demonstration.
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To visualize detections of faint moving objects made by the
multiframe pipeline described in this paper, Figure 6 shows a
100 x 100 pixel cutout of a TESS star-subtracted image frame
in the input frame stack, with objects detected by the single-
frame pipeline labeled and highlighted in red boxes and
additional objects detected by the multiframe pipeline num-
bered and highlighted in blue circles. Note that all three bright
objects detected by the single-frame pipeline were also detected
in the multiframe pipeline. Although the numbered and
encircled objects were not visible or detectable in a single
image frame, the multiframe search and detection pipeline was
able to identify these objects by testing multiple different
velocity hypotheses with FaXT over a 128-frame stack to
increase the S/N of these faint objects. The detections of the
six faint objects in the multiframe pipeline are illustrated on the
right panel. The image cutout shown for each object represents
a slice in the 4D multihypothesis parameterized space at the
detected velocity vector, or, in other words, equivalent to the
image of the object as integrated along its velocity over 128
subsequent frames in the frame stack.

5. Discussion

Several ongoing efforts and considerations for further
improving the faint moving object search and discovery
method presented in this paper are discussed below.

1. To effectively discover previously unknown objects, a
robust false-positive rejection scheme is necessary.
Classification techniques, including discriminant analysis
and machine learning are being developed to improve
confidence in objects detected by the pipeline that was
not correlated to known object database. Training sets can
be generated by collecting detections of known objects
and/or creating synthetic images with injected sources
simulating faint objects as well as potential false-positive
modes. Relevant features for classification may include
stacked image S/N, contrast, flux accumulation time
series.

2. The memory utilized by FaXT is approximately the
amount of memory needed to store the number of
hypotheses tested (N, X N, X N, x N,y). This required
memory may become significant for large image frames
and wide velocity search range. One method to reduce the
peak memory requirement is to run FaXT on substacks of
smaller sizes, with overlaps in each spatial dimension, as
described in the proof of concept presented in Section 4.
Other methods to reduce the peak memory usage
include performing detection in the last stage of FaXT
to avoid saving all tested hypotheses, searching indepen-
dent velocity regimes separately, and reducing search
resolution.

3. The velocity search space can be defined for each use
case and does not need to follow the baseline search
parameters presented in this paper. For example, for
slow-moving objects, the maximum velocity searched in
the pipeline can be capped, which will result in fewer
operations and faster runtime. For searches that center
around a nonzero reference velocity vy, one can simply
pre-shift the image stack by vy prior to applying the
search algorithm.

4. Ongoing work is being carried out to expand the search
constraints of FaXT to include objects that move faster
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Figure 5. TESS moving-object detection performance with and without multiframe detection. (Top) Histogram of the number of objects as a function of the visual
magnitude for (white) all known objects that had passed the instrument’s field of view during the time period of interest, (red) objects detected by the single-frame
detection alone, and (blue) objects detected by the single and multiframe faint-object detection. (Bottom) Detection fraction as a function of the visual magnitude with
(blue) and without (red) multiframe faint-object detection. Multiframe detection was shown to provide approximately 1.5 visual magnitudes improvement in detection
sensitivity, resulting in thousands of detections of objects previously too faint to be detected in the single-frame pipeline.
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Figure 6. Sample cutout of a TESS star-subtracted frame that includes bright objects that were detected in the single-frame pipeline (red squares) and faint objects that
were only detected in the multiframe search and detect pipeline (blue circles). The right panel shows the detection of each faint object as detected in the
multihypothesis parametrized space along the detected velocity vector after integrating along 128 subsequent frames. All objects are labeled with their corresponding
packed MPC designations and estimated MPC visual magnitudes at the time of detection.

than 1 pixel per frame, i.e., streaking in a single frame, For fast-object detection, the input data structure can be
and objects that do not traverse the entire frame stack, i.e., rotated such that the vertical axis aligns with the direction
starting to enter the field of interest after the first frame. of the slowest motion before performing FaXT. For
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objects entering on the side of the input data cube,
additional padding can be applied on each side prior
to FaXT.

5. FaXT performance can be further improved with the use
of GPUs. Early experiments with implementing FaXT on
GPUs show a 100x reduction in runtime with little
implementation optimization. Additional work is under
development to create a full pipeline for real-time
operation.

6. To improve the astrometric accuracy of the detection and
account for track nonlinearity, methods have been
developed to use the detection from FaXT as an initial
guess to a photometric-based local optimization algo-
rithm that returns a refined track, which can be
parametrized with higher order terms to account for any
expected nonlinear motion. Early results showed that this
local optimization can effectively recover curvature in
tracks given sufficient integrated total S/N.

7. In addition to the proof-of-concept asteroid detection
application detailed in this paper, the presented search
and detection pipeline has also been adapted to detect
fainter outer solar system objects in TESS full-frame
images. To further improve the sensitivity limit of the
search, the number of frames per substack was increased
from 128 frames to 512 frames. Because of the lower
angular apparent motion of outer solar system objects, the
velocity search range can be significantly reduced in this
case. Early results show successful recovery of known
trans-Neptunian objects and Centaurs, with many detec-
tions made for objects fainter than 22 visual magnitudes.

6. Conclusion

We present a new track-before-detect technique, referred to
as FaXT, that is capable of detecting faint moving objects
through optical image data in a blind search with significant
speedup compared to traditional search methods. Benchmark
testing shows that FaXT can perform a blind search on a
256 pixel data cube 50 times faster than traditional velocity-
matched filtering techniques. As a proof of concept, we
developed a faint moving object detection pipeline based on
FaXT and applied the pipeline to image data from the TESS
mission. Results show significant improvement in sensitivity in
comparison with the existing single-frame detection pipeline,
leading to the detection of asteroids up to 1.5 visual magnitudes
fainter than previously possible with limited computational
burden. The method described in this paper can enable
large-scale search and discovery of small and distant planetary
bodies in astronomical image data that had not been previously
detected.
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